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Mutations in FOXP1, located at 3p13, have been reported in

patients with global developmental delay (GDD), intellectual

disability (ID), and speech defects. Mutations in FOXP2, located

at 7q31, are well known to cause developmental speech and

language disorders, particularly developmental verbal dyspraxia

(DVD). FOXP2 has been shown to work co-operatively with

FOXP1 inmouse development. An overlap in FOXP1 andFOXP2

expression, both in the songbird and human fetal brain, has

suggested that FOXP1 may also have a role in speech and

language disorders. We report on a male child with a 0.19MB

intragenic deletion that is predicted to result in haploinsuffi-

ciencyofFOXP1. Reviewofourpatient andothers reported in the

literature reveals an emerging phenotype of GDD/ID with mod-

erate to severe speech delay where expressive speech is most

severely affected. DVD appears not to be a distinct feature in this

group. Facial features include a broad forehead, downslanting

palpebral fissures, a short nose with broad tip, relative or true

macrocephaly, a frontal hair upsweep and prominent digit pads.

Autistic traits and other behavioral problems are likely to be

associated with haploinsufficiency of FOXP1. Congenital mal-

formations may be associated. � 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Microarray testing in global developmental delay (GDD) and

intellectual disability (ID) yields a copy number variant result in
2013 Wiley Periodicals, Inc.
on average 7.8% of patients with non-syndromic GDD/ID, and in

10.2% presenting with syndromic features [Michelson et al., 2011].

The FOXP proteins (FOXP1–4) are a group of transcription

factors important in embryological, immunological, hematological,

and speech and language development [Shi et al., 2008;Hannenhalli
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and Kaestner, 2009; Benayoun et al., 2011]. Associated human

diseases include speech and language disorders, severe immunolog-

ical defects and cancer. Although mutations in FOXP1 (OMIM
�605515) have been reported in patients with GDD/ID and speech

defects [Pariani et al., 2009; Carr et al., 2010; Hamdan et al., 2010;

Horn et al., 2010; O’Roak et al., 2011; Talkowski et al., 2012], the

physical phenotype requires further characterization. FOXP1 is

known to be associated with monocyte differentiation and macro-

phage function [Shi et al., 2008], decreased overall survival with B-

cell lymphoma(BCL) [Banhamet al., 2005;Yuet al., 2011], failure to

produce anti-HBs antibodies after hepatitis B vaccine administra-

tion [Davila et al., 2010], generalized vitiligo [Jin et al., 2010], and

possibly inflammatory bowel disease (IBD) [Franke et al., 2010].

Mutations in FOXP2 (OMIM �605317) are well known to cause

developmental speech and language disorders, particularly devel-

opmental verbal dyspraxia (DVD) [Lai et al., 2001; MacDermot

et al., 2005; Liégeois et al., 2011]. FOXP2hasbeen shown towork co-

operatively with FOXP1 in mouse development [Shu et al., 2007].

An overlap in FOXP1 and FOXP2 expression in the songbird and

human fetal brain has suggested that FOXP1may also have a role in

speech and language disorders [Teramitsu et al., 2004].We report a

6-year-oldboywith adeletion inFOXP1 andreview the literature for

deletions or inactivating mutations of FOXP1.
CLINICAL REPORT

We report a male, first-born child of nonconsanguineous parents.

There was no significant family history. He was born after a normal

pregnancy, at term, by caesarean. His birth weight was 3.2 kg (25th

centile), length48 cm(25thcentile), andOFC36.5 cm(75thcentile).

Hismotherwas 34 and his father 39 years old at the time of his birth.

After successful early breastfeeding, the patient developed feeding

problems, and failure-to-thriveat 11weeksof age.This resolvedwith

the introduction of solids by 6months. He had oro-motor dysfunc-

tion with excessive drooling, difficulty sipping from a cup and

ongoing problems with chewing some solids.

Development was globally delayed, most notably in the area of

speech and language acquisition. First words appeared at 17

months. At 2.5 years, he had 6 words, but understood approxi-

mately 50. Sentences were not spoken until 4 years 4 months.

Receptive and expressive language was severely delayed, though

receptive language appearedmore advanced.Articulationproblems

included moderate to severe difficulty pronouncing consonants.

His speech was not dyspraxic. Motor milestones were delayed. He

rolled and sat unsupported at 12 months, cruised from 16 months,

and did not walk until 25 months. A coarse pincer grasp developed

at17months.Occupational therapy resulted in significant improve-

ment, but at age 7 years hisMiller Function and Participation Scales

(M-FUN) motor development score was in the low range. At age 7

years, he was partially toilet trained. He remained incontinent of

urine at day and night. Hearing and visionwere normal. There were

no behavioral problems or autistic features. He did not have

developmental regression or seizures. He had a past history of

moderate, well-controlled asthma. Growth parameters have fol-

lowed the 25–50th centiles for height and weight.

At 6.5 years his height was 115.3 cm (25th centile), weight 21 kg

(40th centile), and OFC 55 cm (0.5 cm above the 98th centile).
Maternal and paternal OFC measurements were 55 cm (50th

centile) and 58 cm (98th centile), respectively. Facial features

included prominent forehead, down slanting palpebral fissures,

and a flat malar region. His nose was short with a broad tip (Fig. 1).

There were prominent digit pads and clinodactyly of his fourth toes

bilaterally. Neurological examination was normal.

Investigations with normal results included fragile X testing (19

CGG repeats in FMR1) and urinemetabolic screen (including urine

amino acid, organic acid, and glycosaminoglycan screen). Cerebral

MRI at age16 months showed prominent ventricles, but no other

abnormality. Renal ultrasound scan at age 6.5 years was normal.

The family declined an echocardiogram.

G-Banded karyotype showed normal 46,XY banding. CGH

microarray using 60k Oligo ISCA design (BlueGnome), analyzed

with BlueMulti v2.3, revealed a deletion at 3p13 (71,041,636–

71,229,421, GRCh37/HG19), 190 kb in size. FISH studies with

probe RP11–90H15 (The Centre for Applied Genomics, Toronto,

Canada) confirmed the copy number change. The deleted region

includes exons 6–13 of FOXP1. This is expected to result in a

severely truncatedprotein, likelynon-functional ornot producedat

all (due to nonsense-mediated mRNA decay of its premature

termination codon containing mRNA). Parental FISH studies

showed this to be a de novo occurrence in our patient.
DISCUSSION

Fromreviewofourpatient andnineothers reported in the literature

[Pariani et al., 2009; Carr et al., 2010; Hamdan et al., 2010; Horn

et al., 2010; O’Roak et al., 2011; Talkowski et al., 2012], we find an

emergingphenotype inpatientswithFOXP1haploinsufficiency. To

our knowledge this is the largest cohort of patients with FOXP1

mutations and it defines the associated phenotype of global DD/ID

with moderate to severe speech delay, with expressive speech most

severely affected. Facial features include a broad forehead, down-

slanting palpebral fissures, a short nose with broad tip, relative or

truemacrocephaly, frontal hair upsweep, andprominent digit pads.

The features of 10 patients are outlined in Tables I and II. Pariani

et al. [2009] did not describe Patient 1 as having a short nose with

broad tip, but the authors feel that this is a fair description of the

patient depicted photographically. Many of the common features

are seen clearly in the patient images (Figs. 1–3). These show our

patient and previously unpublished images of patients reported by

Carr et al. [2010], Horn et al. [2010] and Horn [2012].

Though we noted a trend towards relative macrocephaly, only

our patient developed anOFC above the 98th centile. Paternal OFC

measurement was at the top end of the normal range, suggesting

that that this familial trait, in combination with the FOXP1muta-

tion, may have resulted in true macrocephaly. Less common

features included widely spaced eyes, ptosis of the eyelids and a

smooth philtrum [Carr et al., 2010]; sparse lateral eyebrows [Horn

et al., 2010]; blepharophimosis, epicanthus, andundescended testes

in a child with a multiple gene deletion [Pariani et al., 2009].

The most consistent feature of FOXP1 haploinsufficiency in this

cohort was GDD/ID with prominent speech delay [Pariani et al.,

2009; Carr et al., 2010; Hamdan et al., 2010; Horn et al., 2010;

Talkowski et al., 2012]. Neurodevelopment can be impaired by

mutations affecting a diverse range of cellular functions. These



FIG. 1. Patient 10 (patient reported in this paper). Note prominent forehead, downslanting palpebral fissures, short nose with broad tip,

prominent digit pads, and clinodactily of fourth toe.
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include axon guidance, synapse formation and epigenetic regula-

tion of gene expression and methylation, among others [Franklin

andMansuy, 2011; Schaefer et al., 2011].More than onemember of

a particular gene family is often identified in the search for causative

mutations [Mitchell, 2011; Topper et al., 2011].

FOXP1 is expressed throughout the human central nervous

system [Teramitsu et al., 2004]. FOXP1 appears to have a role in

the control of motor neuron migration and axon trajectory choice

in mice [Palmesino et al., 2010]. It has been demonstrated to

regulate Pitx3 transcription in mammalian stem cells. Pitx3 is

required for the differentiation of mouse midbrain dopaminergic

neurons [Konstantoulas et al., 2010]. The finding of developmental

delay in all the patients in our series further supports FOXP1’s role

in neurodevelopment. FOXP1’s role inmotor neuron development

[Dasen et al., 2008; Pfaff, 2008; Rousso et al., 2008] is of particular

interest considering the consistent finding of gross motor delay.

Considering FOXP1’s role in Pitx3 transcription, it is worth

noting that no patients in this series had visual problems other than

refractive errors. Our patient did not have opthalmologic evalua-

tion. Mutations in PITX3 have been implicated in anterior seg-

mental mesenchymal dysgenesis and congenital cataract [Burdon

et al., 2006; Summers et al., 2008]. PITX3 polymorphism has also

been associated with Parkinson disease [Tang et al., 2012]. There

were no reports of Parkinsonian features in our cohort, though

children may not be expected to show these.

FOXP1 appears to have a more global influence on neurodevel-

opment than FOXP2. Patients in this series were delayed in speech/
language, motor and intellectual domains. FOXP2 has been shown

to work co-operatively with FOXP1 in mouse development [Shu

et al., 2007]. The activity of these proteins is regulated by homo and

heterodimerization and this appears to be required for transcrip-

tional activity and DNA binding [Li et al., 2004]. Although there is

apparent co-operation between these two genes, the difference in

phenotype with haploinsufficiency is considerable [Bacon and

Rappold, 2012]. Foxp1 and Foxp2 are expressed in different sub-

populations of cortical projection neurons during development in

mice [Hisaoka et al., 2010]. Other possible explanations for phe-

notypic differences may include different regulatory targets of

FOXP1-FOXP2 heterodimers and homodimers [Hamdan et al.,

2010].

Mutations in FOXP2, located at 7q31, 113,726,365–114,333,827

(GRCh37/HG19) are a rare cause of developmental speech and

language disorders, particularly DVD [Lai et al., 2001; MacDermot

et al., 2005; Liégeois et al., 2011]. There are no consistent findings of

either ID or grossmotor delay in patients withmutations in FOXP2

[Lai et al., 2001; Fisher and Scharff, 2009]. The speech and language

delay in patients with FOXP1 haploinsufficiency is moderate to

severe. Expressive skills are consistently more severely affected than

receptive skills. Particular difficulty with articulation of consonants

is described in the majority of patients. Some patients in this series

had oro-motor dysfunction and/or articulation problems, but

DVD, a problem in cerebral planning of speech, was not described.

The clinical distinction between articulation problems and DVD

canbedifficult inpatientswith ID/DD,butoftenbecomes clear over
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FIG. 2. Patient 7. Note prominent forehead, downslanted palpebral fissures, and short nose with broad tip. This patient was described by Carr

et al. [2010]. We thank the authors for these previously unpublished images.
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time. Although a study of 49 patients with DVD identified no

causative FOXP1mutations, that cohort excluded patients with ID,

as itwas previously used to identifyFOXP2mutations [Vernes et al.,

2009].

Autistic behavioral traits were described in three patients in this

series and FOXP1 haploinsufficiency may well be associated with

ASDs [Hamdan et al., 2010; O’Roak et al., 2011]. Though these

patients were selected on the basis of this trait, suggesting possible

selection bias, autistic behavior appears to be a common feature.

O’Roak et al. [2011] reported a patient with severe autism, devel-

opmental regression, language delay, moderate ID, and non-febrile

seizures. The more severe phenotype in this patient was hypothe-

sized to be due to an additive effect of the second mutation in

CNTNAP2, located at 7q35 (OMIM �604569). FOXP2may, at least

indirectly, be associated with autism, though research has been

inconclusive [Newbury et al., 2002; Mukamel et al., 2011; Bowers

and Konopka, 2012; Casey et al., 2012]. Other behavioral problems

described in this patient series included hyperactivity, aggression,

mood lability, and specific obsessions and compulsions [Hamdan

et al., 2010; Horn, 2012].

FOXP1 appears to have a role in organogenesis in mice [Pohl

et al., 2005; Shu et al., 2007; Zhang et al., 2010]. Reported patients

with congenital malformation may indicate FOXP1’s effect. Con-
tiguous gene deletion may well explain some of the malformations

[Pariani et al., 2009] but not others, such as Chiari I malformation

[Carr et al., 2010] and intestinal atresia [Hamdan et al., 2010].

FOXP1 was affected in isolation in these cases. Jejunal and ileal

atresia was reported in a patient with a point mutation in FOXP1

[Hamdan et al., 2010]. FOXP1may be involved in the development

of the mouse foregut, but midgut structures were not described

[Shu et al., 2007]. Only Carr et al. [2010] reported echocardiogram

or renal ultrasound results andno abnormalitiesweredetected.Our

patient had a normal renal ultrasound.

No patient in this cohort had significant immunological prob-

lems, though formal testing of immune function was not reported

and not performed in our patient. FOXP1 appears to play a

significant role in immune development [Shi et al., 2008; Feng

etal., 2011]anddefects inFOXP3, a close relative, areknowntocause

immunodysregulation, polyendocrinopathy, and enteropathy, X-

linked (IPEX) (OMIM #304790) [Bennett et al., 2001; Brunkow

et al., 2001]. Downregulation of FOXP1 is required for monocyte

differentiation and macrophage function [Shi et al., 2008]. FOXP1

has recently been shown to regulate T-cell quiescence in mice [Feng

et al., 2011]. A single-nucleotide polymorphism (SNP) in the 30

downstream region of FOXP1 has been found to be associated with

failure to produce anti-HBs antibodies 18 months after hepatitis B



FIG. 3. Patient 3. Note prominent forehead, frontal hair upsweep and short nose with broad tip. This patient was described by Horn et al.

[2010, 2012]. We thank the authors for these previously unpublished images.
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vaccine administration [Davila et al., 2010].Variants inFOXP1have

been associated with generalized vitiligo [Jin et al., 2010] and there

may be an associationwith IBD [Franke et al., 2010]. There has been

much recent interest in the role of FOXP1 in cancer. FOXP1

expression had an adverse effect on survival of patients with extra-

nodal diffuse large BCL [Banham et al., 2005; Yu et al., 2011]. There

was no neoplasia in our patient series.

FOXP1 mutations were on the paternal allele in three patients

reported by Horn et al. [2010]. The great majority of FOXP2

mutations are of paternal origin [Feuk et al., 2006]. Differential
allelic expression and maternal imprinting may be important in

disease development involving defects in both, FOXP2 and FOXP1.

Genotype analyses were performed on patient and parental DNA

samples to determine whether the FOXP1 deletion in our patient

wasmaternally or paternally derived.Microsatellitemarker analysis

was inconclusive. A SNP trio analysis [Ting et al., 2007] was

performed using genotyping generated from the Illumina Human-

CytoSNP—12 v2.1 microarray. This showed one informative

marker (rs3846030; chr3:71,148,387–71,148,887 GRCh36) of the

twenty-eightmarkers present within the region of interest, suggest-
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ing themutationwas on the paternally derived chromosome 3. The

remaining 27 markers were uninformative. While this is not

conclusive, it is consistent with the paternal origin of FOXP1

mutations reported previously [Horn et al., 2010].

Horn et al. [2010] identified one 1.3MB deletion affecting

FOXP1, EIF4E3 (MIM# 609896), PROK2 (MIM# 607002), and

GPR27 (MIM# 605187) in an individual from the long-lived

individuals study with no indications of an ID phenotype. Incom-

plete penetrance may explain this.

Many patients with larger 3p interstitial deletions including

FOXP1 have been reported. Though phenotypes are understand-

ably varied in this group due to the involvement of other genes, it is

interesting that many features overlap with those seen in isolated

FOXP1 mutations. Facial features such as a broad forehead and a

short broad nose are commonly noted. Not surprisingly, a broad

range of malformations is frequent in patients with these larger

deletions [Ţuţulan-Cunită et al., 2012]. We are aware of a patient

with a large 3p interstitial deletion, including FOXP1 and many

other genes. This patient has ASDs and a Chiari 1 malformation

(Dr.TimothyBohan, personal communication). Thepatient shares

facial featureswithpatients inour series, such asbroad forehead and

macrocephaly. We propose that these features may be due to

FOXP1 mutations.
CONCLUSION

We conclude that FOXP1 haploinsufficiency is a cause of ID/DD

with a particular profile of marked speech and language delay.

Expressive language is more severely affected than receptive, and

particular difficulty in expression of consonants is experienced.

DVD was not seen in this cohort. Distinctive facial features are

associated with FOXP1mutations. These include a broad forehead,

down slantingpalpebral fissures, a short nosewith broad tip, frontal

hair upsweep, and relative or true macrocephaly. Autistic behav-

ioral traits and other behavioral problems are common. Congenital

malformations may be associated with FOXP1 mutations. The

associationofFOXP1haploinsufficiencywith immune dysfunction

or cancer survival needs further evaluation.
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Ţuţulan-Cunită AC, Papuc SM, Arghir A, Rötzer KM, Deshpande C,
Lungeanu A, Budişteanu M. 2012. 3p interstitial deletion: Novel case
report and review. J Child Neurol 27:1062–1066.

Vernes SC, MacDermot KD, Monaco AP, Fisher SE. 2009. Assessing the
impact of FOXP1 mutations on developmental verbal dyspraxia. Eur J
Hum Genet 17:1354–1358.
Yu B, Zhou X, Li B, Xiao X, Yan S, Shi D. 2011. FOXP1 expression and its
clinicopathologic significance innodal and extranodal diffuse largeB-cell
lymphoma. Ann Hematol 90:701–708.

ZhangY,LiS,YuanL,TianY,Weidenfeld J,YangJ,LiuF,ChokasAL,Morrisey
EE. 2010. Foxp1 coordinates cardiomyocyte proliferation throughboth cell-
autonomous and nonautonomous mechanisms. Genes Dev 24:1746–1757.


